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An  idealized three-dimensional model of  an air bubble (a  thermal) rising in the atmosphere is considered. 

The shape of the thermal is taken to be ellipsoidaL The addi t ional  mass, the energy o f  the circulating mot ion  

of  the air inside the bubble, the energy of  the compensating motion of the air downward in the region of  

streamlining, and the total energy of the process of rising are determined. 

T h e  rise of large air bubbles (thermals) under  the effect of the  Archimedes force is one  of the most common 

forms of convective motion in the ear th ' s  atmosphere.  The magni tude  of the force depends  on the difference of 

temperatures  between the air of the thermal and the surrounding a tmosphere  at the same height.  

One of the possibilities for the appearance of these bubbles  is that at the surface of the earth the air  is 

heated due to orographic nonuniformity and, as a consequence, a convective ascending jet is formed. After a t ime, 

due to changes  in the conditions of heating of the underlying surface or a strong gust the convective jet separates  

from the ear th  and  a closed air bubble (a thermal) is formed. 

It is known that in motion of some bodies in a medium excess  pressure appears  at the ends of the body 

and, conversely,  a deficit of pressure in the equatorial plane. This  gives rise to forces tha t  strive to compress the 

body in a longitudinal  direction and stretch it in a transverse direction.  It is obvious that compressive-tensile forces 

will also act on a moving air bubble. The  internal rotational motion of the air in the bubble  opposes the forces that  

strive to de form it [1 ]. The  test data show [21 that the bubble has  an oblate shape and  indicate the conservation 

of the axial symmet ry  of the bubble. The  shape of an oblate ellipsoid of rotation that  does not strongly differ f rom 

a sphere is the closest to the actual shape of a thermal. 

In [1 ] a three-dimensional  idealized model of a spherical air  bubble is constructed.  This is an ex t reme 

case of an oblate  ellipsoid of rotation. In the present paper the approach of [1 ] is general ized and an idealized 

model of an ellipsoidal thermal is constructed. The  meridional cross section of this thermal  is an ellipse (Fig. 1) 

with semiaxes a and b and eccentricity e = c / a  = ~/1 - b2/a 2 , where  c is the half -dis tance between the foci of the 

ellipse. T h e  shape of actual thermals [2 ] does not strongly differ  f rom spherical ( b / a  <_ 0.85),  so the value of the 

eccentricity lies within the range 0 < e < 0.5. 

We in terpre ted  the motion of the air bubble as a local process 13 ]. In this local process (Fig. 2) the core 

A is the air bubble  proper, and the zone of streamlining B is the zone  of a descending compensat ion motion of the 

surrounding air. In zone B the air is in contact with the core for a comparatively short  per iod of time and virtually 

retains an initial nonvortical state. Therefore ,  by analogy with well-known problems of motion of a solid body in 

liquid [4 ] we assume a flow in the zone of nonvortical (potential) streamlining. However,  on the boundary between 

the core and  the zone of streamlining and also between the layers  of the core itself the force of friction acts 

continuously. Due to this fact, at the initial stage of the process of rising the air of the core acquires and then  

conserves, along with translatory motion, rotatory motion too, which is characterized by  a nonzero  angular velocity 

of the particles of which the core consists. As a result of t ransfer  of angular velocity the ro ta tory  motion occupies 

the entire volume of the core. Thus,  both continuity of physical parameters  and force equil ibrium of the process as 

a whole is provided.  So, the entire region occupied by the process can be divided into an internal  vortex zone A 

and a region of potential flow B. 
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Fig. 1. Coordinates of the oblate ellipsoid of rotation. 

Fig. 2. Stream lines in the motion of the ellipsoidal thermal in the atmosphere 

(00', central vortex line; A, rising thermal  - the core of the process; B, 

region of streamlining; C and D, f ront  and  rear  end points; z, vertical axis of 

symmetry) .  

The  medium is assumed incompressible since the effects of compressibili ty manifest themselves only at 

velocities close to the velocity of sound, while the velocity of thermals is of the o rde r  of several meters  per  second. 

First, we calculate the flow in the external potential  zone - the zone of streamlining. Here  we use the 

ellipsoidal coordinates a, r, e (Fig. 1) [5 ]. The thermal  itself is taken as an initial oblate ellipsoid of rotat ion.  The  

oblate ellipsoids of rotation (a = const),  one-pole hyperboloids  of rotation (r = const) ,  and half-planes passing 

through the origin of the coordinates (e = const) are the coordinate surfaces. Th e  transformation of the ellipsoidal 

coordinates to the Cartesian rectangular  coordinates x, y, z is made by the formulas:  

2 2 t72 2 2 2 2 a2 2 x = c (1 + ) (1  - )cos  e ,  y = c (1 + ) (1  - ) s i n  2 e ,  z =  c a r .  (1) 

In the ellipsoidal system of coordinates the Lam6 coefficients [5 ] have the form: 

H~ [ I  + a 2 )  ' Hr=c - - -  ' H e = c x / ( 1  + c r z ) ( 1 - r 2 ) "  (2) 

The  coordinate surface corresponding to a -- a 0 coincides with the boundary  of the initial ellipsoid and  thus 

4T=-Zz (3) 
a 0 =  e 

As is known [6 ], the velocity of the potentially moving liquid (rot ~=  0) can be presented in the  form of 

the gradient  of some scalar function So - the potential  of the velocity: ~"= grad So. Th e  conditions of potent ia l i ty  

and noncompressibil i ty of liquid (div ~=  0) determine the Laplace equation for So 

ASo = 0 ,  

where  A -- div grad is the Laplace operator.  

In the coordinates of the oblate ellipsoid of rotat ion under  the condition of symmet ry  of the process  relative 

to the vertical axis the Laplace equation has the following form [51: 

[(1 + a 2) = (4) 

In accordance with the method of separation of the Fourier variables the function SO(o, r) is p re sen ted  in 

the form of the product of two functions each of which involves a dependences  on only one variable: So(o, r )  = 
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ff2(a)T(z). Substi tut ing this expression in (4) and separating the variables,  we obtain two second-order  ordinary 

differential equations 

(1 - - r  2) d2T (Q - 2rdT'(r)  + n ( n  + 1) T ( r )  = 0 ,  
dr 2 dr 

(s) 

(1 + a  2) d2ff2(a) + 2 a d f 2 ( a ) _ n ( n +  1) f f 2 ( a ) = 0 .  
da 2 da 

(6) 

The first of these equations is the Legendre equation. In turn, the second is reduced to the Legendre 

equation by complex substi tution of x = ai, where i is an imaginary unit. The Legendre polynomials [5, 7 ], by 

which we, proceeding from (5), (6), constructed the total solution of the initial equation 

are the solutions of Eq. (5). Here  v o is the velocity of the outer  flow in the free space in the transfer coordinate 
system connected with the thermal; Pn and Qn are the Legendre polynomials of the n-th power of the first and 
second order, respectively.  To determine  the coefficients A n we use  the  known relation between the partial 

derivatives of the s t ream function and the potential in the curvilinear sys tem of coordinates [4, 7] and then make 

substitution of (2) 

du HEH T d~o d~o 
d~ - H-----~ da - c (1 + a 2) da " 

Substituting expression (7) into the last expression and using (5), we obtain the formula for the stream 
function which, being equated to zero, gives the equation of the zeroth stream surface 

2A n dQ n dP n 
n=l n ( n  + 1) da dr 

+ 1 = 0 .  

From this expression we find the coefficients An and, having subst i tu ted  them into (7), we have the following 
expression for the potential of the flow past the oblate ellipsoidal thermal:  

. a arcct__an a_ ~ 1 - a]  
T = - CVo [arcsin e - e ~ .1  r ,  (8) 

Proceeding from (8), we can easily obtain the components of the velocity of the flow in the coordinates a, 

r :  

1 + a  2 
va= - V o 4 [ a 2  + r  2 

arcctan a 2 
l + a  - 1  

arcsin e - e 
T, (9) 

( 1 - 2 /  [. a_arcctan a -  1 a] 

v ~ - v ~  ) Larcsin e _ e ~ - ~ - ' Z  - �9 

On the surface of the  initial ellipsoid (a = ao): 

(10) 
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va=O ' v~-'Vo 1 - 2  e (11) 
1 + e 2 (r  2 - 1 arcsin e - e V ~ I - Z - ~  " 

It follows f r o m  (11) tha t  the  f ron t  a n d  r ea r  s t reamwise  end  po in t s  (r -- _ 1) are  critical -:- at these  points  the  ve loc i ty  

vanishes .  A n d  in the  midd le  (equator ia l )  plane (r = 0) the  veloci ty  is max imum 

Vmax  

3 
e 

= v0 ~ (a rcs in  e - e x/-l---Z-~) 
(12) 

is valid. 

At values  of the  eccent r ic i ty  0 < e < 0.5 typical  of  ac tua l  thermals  an  approx imate  equal i ty  

Vma x -~ 1 + ~ e 2 = v 0 

For  example ,  the  veloci ty  of the  outer  flow in the  midd l e  plane is Vma x = 1.503v 0 at e - 0.1, a n d  Vma x = 

1.575v 0 at  e = 0.5. Thus ,  the  m o r e  obla te  is the ell ipsoid,  t he  h igher  the velocity of the s t reaml in ing  flow in the  

middle  plane.  

As is known,  acce le ra ted  mo t ion  of the b o d y  in the  m e d i u m  can be cons idered  as occur r ing  in a v a c u u m ,  

if some add i t i ona l  mass  is fo rma l ly  a d d e d  to the mass  of  this  body  [4]. In our  case we ob t a ined  the fo l lowing 

cxpress ion  for  the  add i t iona l  mass  of  the  oblate ell ipsoid of  rota t ion:  

m a d  d = r n  

e 
arcsin e 

a rcs in  e - e 
(13)  

Here  m =pV is the mass  of the  init ial  ellipsoid, V = (4/3)~ra3X / 1 - e 2. 

W h e n  e < 0.5, an  a p p r o x i m a t e  relat ion 

is valid. 

T h u s ,  the  ene rgy  of the  air  in the zone of s t r e aml in ing  is 

m .  (14)  

= E k i  n , 

~ h c r c  Eki n = my2~2. 
T h e  d is t r ibu t ion  of  p re s su re  over  the surface of  the  ellipsoid is obta ined  f rom the Bernoull i  equat ion  

(15) 

2 
v (16)  P + p ' ~ = P t  + Et, 

whcre  Pt a n d  E t = pv~/2 are  the  p res su re  and  the specific e n e r g y  of the liquid in the t r ans fe r  sy s t em of r e c k o n i n g  

at a large d i s t ance  f rom the  ell ipsoid,  respectively;  v is t he  veloci ty on the surface of the  ellipsoid. 

F r o m  (14) we d e t e r m i n e  the  difference in p r e s s u r e  Ap = p -  Pt = E t -  pv2/2, i.e., the  d i f f e rence  of  

pressures  at  an  a rb i t r a ry  point  on  the  surface of the  t h e r m a l  a n d  in the free space. Subs t i tu t ing  the  value of  v f r o m  

(11), we ob ta in  

A p = E  t 1 - " l_-2_z._ 2. . e . 
1 + e  2 ( r  2 -  a r c s i n e - e  

(17)  
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As follows from this formula ,  the positive difference in pressure acts on the end points of the ellipsoid in the 

longitudinal direction 0: -- - 1) 

Ap = E t > O. (18) 

In the transverse di rect ion (r -- 0) 

[ e3 
A p = E  t 1 -  ~ a r c s i n e - e  

The  expression in square  brackets is negative at an arbi t rary e, consequent ly  

A p <  0 .  

21 
(19) 

Inequalities (18),  (19) show that in the longitudinal direction the ellipsoid is affected by the force which 

compresses it (Ap > 0) ,  and  in the transverse direction by the tensile force (Ap < 0). Th e  total est imate of the 

balance of these forces is made  from the value of the integral scalar moment  of force [3 ] 

M = f ( 7 "  7") d S ,  (20) 
s 

where f is the densi ty  of the force distributed over the surface S. The  integral  scalar moment  is positive for tensile 

forces and negative for compressive. 

We consider the  integral scalar moment  of the pressure force. Th e  difference in pressure Ap (17) taken 

with an opposite sign is the reduced density of the surface force of pressure.  The  quanti ty M is divided into 

longitudinal Mz and t ransverse  Mh components,  which in our case have the form 

Mz = _ f Aprz d S z ,  (21) 

8 
M h = - f Ap (rxdS x + rydSy ) .  (22) 

First we f ind the  longitudinal part  of the integral scalar moment  (21). For this we express  r z in the 

ellipsoidal coordinates using (1), (3) 

r z = z = C~ = a ~ T .  (23) 

It is known [5 ] tha t  the component of an arbitrary vector F, for example,  over z in the Cartesian coordinates 

is determined in terms of the components of this vector in the ellipsoidal coordinates as 

Oz F o Oz F T Oz F e (24) 
Vz-  Oo G G + 0-7 

We use (24) for  the  vector of an elementary surface dS (F --, d-if). Th e  direction of the vector d S  is taken 

along the outer normal  to the surface of the ellipsoid and, consequently,  only the component  over a is not equal to 

zero (dS~ = dSe = 0). Thus ,  

Oz dSa l  = a2rdEdT. 
dSz  = - ~  HaJa=aO 

(25) 

The values of all quantities entering (21) are taken for the surface of the ellipsoid, therefore  a = cr 0. 

Substituting Ap from (17), r z from (23), and dSz from (25) into (21), we obtain the expression for Mz 
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where 

[ 2] +1 1 - r  
= -- 2~a 3 ~ E  t f r 2 1 -- e2 A dT:, 

-1  1 + (r 2 -  1) 
(26) 

(a 3 )2 A = e (27) 
rcsin e - 

Hav ing  calculated integral (26), we have 

T h e  express ion for a horizontal (22) component  of the integral  scalar momen t  is found similarly 

M h = Eki n 2 -- --T e -- e 3 . 
e 

When  e < 0.5, using a series of expansions of the funct ions entering (28), (29), we write expressions (28), 

(29) a p p r o x i m a t e l y  in a form convenient for application in pract ice  

Mz = - + 3 - ~  e2 (30) 

T h u s ,  it follows from direct calculation that  compressive forces (Mz < 0) act on the air  bubble  in the vertical  

direction and  tensi le  forces (Mh > 0) in the horizontal direction. With deviation f rom the sphere ,  both compressive 

and tensile forces  acting on the bubble increase and  strive to cause  fur ther  deformation.  However ,  in actuality there  

is no rapid  deformat ion  because the bubble is in force equil ibrium with the sur rounding  a tmosphere .  

As is shown in [3 ], in the absence of the source-sink the force equilibrium of the region of the process 

symmetr ic  relat ive to some axis is determined by the global condi t ion of equilibrium in the  fo rm 

4 E  z _ 2E h = Mh _ 2 M z ,  (32) 

where Ez a n d  E h are the vertical and horizontal  components  of the integral kinetic ene rgy  of the particles of the 

air that move inside the bubble, respectively: 

1 2 1 = p.zas f f  pv2has. (33) gffs 'e =2 s 

To de t e rmine  the unknown quantities Ez and Eh enter ing Eq. (32), we need to take into account c i rculatory 

motion of the  a i r  inside the bubble. Since in this case it moves  by the closed surfaces  of the s t ream and  the  

components  of the velocity change in a complex manner  in t ransi t ion from one surface of the s t ream to ano the r ,  

we behave in the  following way. We determine  the relations between vertical and  hor izonta l  components  of the  

velocity and  kinet ic  energy at the peripheral  surface of the s t r e am and at the surface of the  s t r eam adjacent  to the  

central vor tex  line 0 0 '  (Fig. 2). 

T h e  s t r e a m  lines of the air moving inside the bubble  lie in planes passing th rough  the vertical axis  of 

symmet ry  z. Close  to the central vortex line 0 0 '  of the vortex tube  the stream lines form circles; therefore vertical  

and hor izonta l  components  of kinetic energy for any  of these s t r e am lines are  equal to each other ,  consequent ly,  

in the cent ra l  region of the vortex tube E z = Eh. 
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We now determine the  relation between Ez and  Eh for surface port ions of the bubble. First we find the 

element of the surface area  d S  in the ellipsoidal sys tem of coordinates. It is known from a theory of curvil inear 

coordinates [5 ] that 

dS  = HT:H~dzdeio, (34) 

where t a is the unit ort in the  direction a. 

Taking account of I~al = 1, and also using formulas (2), we have 

d S  = I d-ff I = HrHear:de = a2 X/"1 + e 2 (T 2 - 1)- (35) 

Then ,  from formulas (1), (2), and (24) we obtain the components of the velocity ~and  find the expressions 

for Ez and E h. These express ions  are reduced to a form valid for the values of the  eccentricity e < 0.5: 

721312 E z = "-~ n,a 2 1 _ .~ e 2 p_~,Vo (36) 

18 I 2 2 ] v2 (37) 
E h  = n a  2 1 + e P T " 

Thus,  the ratio of the  vertical component of energy  Ez to the horizontal  component  E h on the surface of 

the bubble is 

K _ 
E~, 

- 4 [1 - e 2 ] ,  
E h 

and near the central vortex line K- -  1. 

According to equalities (30)-(32) 

Using the limiting values K = 1 and K --- 4 [1 - e 2 ], we find for the total  energy of the motion of the air 

inside the bubble 

Ein = E z +  E h =  [ 9 + - ~ 5 e 2 ]  Ekin,  

Combining this value of Ein with the energy of the spherical bubble as a whole Eki n and the energy of the 

air in lhe region of s t reamlining (15), we come to the final expression for the limits of the total energy of the air 

involved in the process of the  bubble 

E = Eki n + Ein + Ep = ] 4  + ~ e 2 33 171 Ekin. (38) 

It incorporates the energy of the rise of the bubble as a whole, the energy of the  circulation of the air inside the 

bubble, and the energy in the  region of streamlining. Th e  limiting values of the energy  E correspond to the limiting 

values of the coefficient K and  indicate the limits within which the value of the  integral energy E with a force 

equilibrium of the thermal is confined. 

656 



As follows from (38) the total energy of the air involved in the process of rising of the spherical thermal 

(e = 0) exceeds the energy of the ellipsoidal bubble as a whole Eki n from 2.14 to 3.3 times. With increase in the 

eccentricity this ratio increases still further and at e - 0.5 it attains a value from 3.22 to 3.42. The additional mass 

varies, correspondingly, from (1.14-2.3) m at e = 0 to (2.22-2.42) m at e -- 0.5 and, consequently, a higher value 
of the additional mass corresponds to a higher value of the eccentricity. 

Thus, in the rise of the air bubble the presence of additional mass leads to a decrease of its acceleration 

and, correspondingly, of the velocity of rise. The additional mass increases still further with compression of the 

air bubble during its motion, thus leading to further decrease in the velocity of the bubble. 

N O T A T I O N  

a, r, e, the coordinates of the oblate ellipsoid of rotation; x, y, z, rectangular Cartesian coordinates; r, 

radius-vector; rx, ry, rz, the projections of the radius-vector in the rectangular Cartesian coordinates; v~ velocity of 

the air; v z, v h, vertical and horizontal components of the vector of the velocity; c, half-distance between the loci of 

the ellipse in the meridional cross section of the initial ellipsoid; e, eccentricity of the ellipse; a, large semiaxle of 
the ellipse; Ha, Hr, H e, Lam~ coefficients; 7', flow potential; g,, stream function; f~(a), T(r), functions of separation 

by the Fourier method; A n, coefficients; V, volume of the thermal; p, density of the air; f, density of the surface 

force; M, integral scalar moment; M z, M h, vertical and horizontal components of the integral scalar moment; dS, 

vector of the elemental area; dS o, dS T, dSE, projections of the vector of the elemental area in the ellipsoidal 

coordinates; Eki n, kinetric energy of the rising bubble as a whole; K, constant equal to the ratio of vertical and 
horizontal components of the integral kinetic energy; Ein, total energy of the motion of the air inside the bubble; 

E, total energy of the air involved in the process of the rise of the thermal; n, constant introduced in separation of 

the variables in the Laplace equation. The subscript h indicates transverse components of the quantities. 
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